

Математика- β

Абака

Участникам выдается задание - поле 4х4 (16 заданий). Задачи в каждой теме решаются по порядку (например, нельзя сдавать задачу №3, если задача №2 ещё не сдана). Строка это одна тема. За верно решенное задание участник получает его стоимость (от 10 до 40 баллов), неправильный ответ - 0 баллов. На каждую задачу есть только одна попытка сдать ответ.

	10	20	30	40
Тема 1	1.1	1.2	1.3	1.4
Тема 2	2.1	2.2	2.3	2.4
Тема 3	3.1	3.2	3.3	3.4
Тема 4	4.1	4.2	4.3	4.4

1 Экстремум

1.1

Крокодил Гена и Чебурашка решили продавать апельсины. Известно, что на рынке установилась цена 100 рублей за килограмм апельсинов. При этом издержки предпринимателей описываются следующим уравнением: $TC = x^2 + 500$, где x — количество апельсинов в килограммах. Предприниматели максимизируют прибыль. Рынок крышует Шапокляк и берет t рублей за каждый проданный килограмм апельсинов, а ставку налога t выбирает такую, при которой налоговые сборы максимальны. Найдите прибыль Гены и Чебурашки при этой ставке налога.

1.2

Найдите максимальное значение функции $y = 12\sqrt[3]{x} - 2\sqrt[3]{x^2} + 5$.

1.3

В стране Таман злой дядя Вова раздаёт двойки, а добрый дядя Игорь раздаёт пятерки. То, сколько пятерок и двоек получат жители, зависит от дня недели, в который они идут их получать (нумерация от 0 до 6, начиная с понедельника). Количество двоек выглядит так: $|x^3 - 6x^2 + 11x - 6| + 5$, а количество пятёрок так: $-x^2 + 4x + 6$, где x — номер дня недели. Жители этой страны, естественно, хотят побольше пятерок и поменьше двоек. В какой день недели жителям оптимально идти получать свои оценки?

1.4

В замечательном городе УГМ счастье граждан складывается из двух компонентов: МЕХа и МАТа. Количество компонентов задаются следующими функциями: $MEX = 69 - \frac{4}{(2x-3)^2}$ и $MAT = 134 - 16x^2 + 48x$, где x — некая абстрактная величина. Найдите наибольшее возможное счастье граждан этой чудесной страны.

2 Производная

2.1

Найдите сумму всех точек по x, в которых наклон касательной к графику по модулю равен 4.

$$y(x) = \begin{cases} x^2, x \in [0; 2] \\ 8 - (x - 4)^2, x \in [2; 4] \end{cases}$$

2.2

Перечислите все точки, в которых наклон касательной к графику уравнения $y^2 + x^2 = 32$ будет равен 1.

2.3

Для некоторой функции производная равна:

$$f'(x) = \frac{(x-1)^2(x-2)^3(x-4)(x-6)}{(x-2)(x+3)^2(x-1.5)}$$

Найдите отношение количества точек локального минимума к количеству точек локального максимума.

2.4

Найдите производную от следующей функции в точке 2023

$$y = \sqrt{(x^2 - 10x + 12345)\sqrt{(x^2 - 10x + 12345)\sqrt{(x^2 - 10x + 12345)\sqrt{(x^2 - 10x + 12345)\dots}}}$$

.

3 Оптимизация

3.1

Найдите минимум функции $x^2 + y^2$ при ограничении 3x + 4y = 25.

3.2

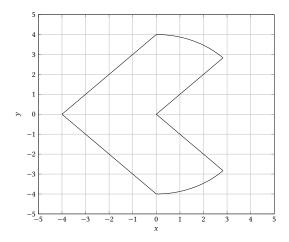
Вам даны две функции прибыли: $\pi_1 = 2020x - 4x^2 + 200000$ и $\pi_2 = 1010x - 2x^2 + 300000$. Найдите, работая по какой из этих функций, фирма получит бо́льшую прибыль в оптимуме.

3.3

Среди точек (x, y), лежащих в полуплоскости $y \le 12-3x$, найдите все точки, в которых выражение $\sqrt{x} + \sqrt{y}$ принимает своё наибольшее значение.

3.4

Рассматривается функция


$$g(x) = 1 + \frac{3\sqrt{x}}{a^2 - a + 1} - x.$$

При каком значении параметра a максимальное значение функции g будет наибольшим? Найдите также это максимальное значение u значение u, при котором оно достигается. В ответ запишите три числа.

4 Микс

4.1

Найдите площадь фигуры, ограниченную графиком, приведённым ниже, если он состоит из кусков линейных функций и окружности с центром в (0;0).

4.2

На далекой планете Плюк некий пацак гоняет на своем пепелаце. Мы знаем, что ускорение пепелаца задается так: a(t)=20+12t, где t измеряется в секундах, а ускорение в м/сек 2 . Известно, что стартуя из точки с координатой 1000 метров, через 10 секунд он оказался в точке с координатой 10 километров. Найдите его скорость (в м/сек) при t=5. [Подсказка: (S(t))'=v(t), (v(t))'=a(t)]

4.3

Некая функция имеет следующий вид:

$$y = \int_{0}^{5} (x^4 + 6x^2 + 10x)dx$$

Найдите, чему будет равна ее производная в точке x = 10.

4.4

Инопланетянин Рома торгует бипками. Известно, что 1 бипка может храниться только в контейнере в виде сферы, а сама бипка имеет форму конуса. Размер бипко-конуса Рома выбирает сам. Найдите, какого объема Роме производить бипки, если контейнеры-сферы имеют радиус 3, а чем больше объем бипки, тем круче! [Подсказка: $V_{konus} = \frac{1}{3}h\pi r^2$]