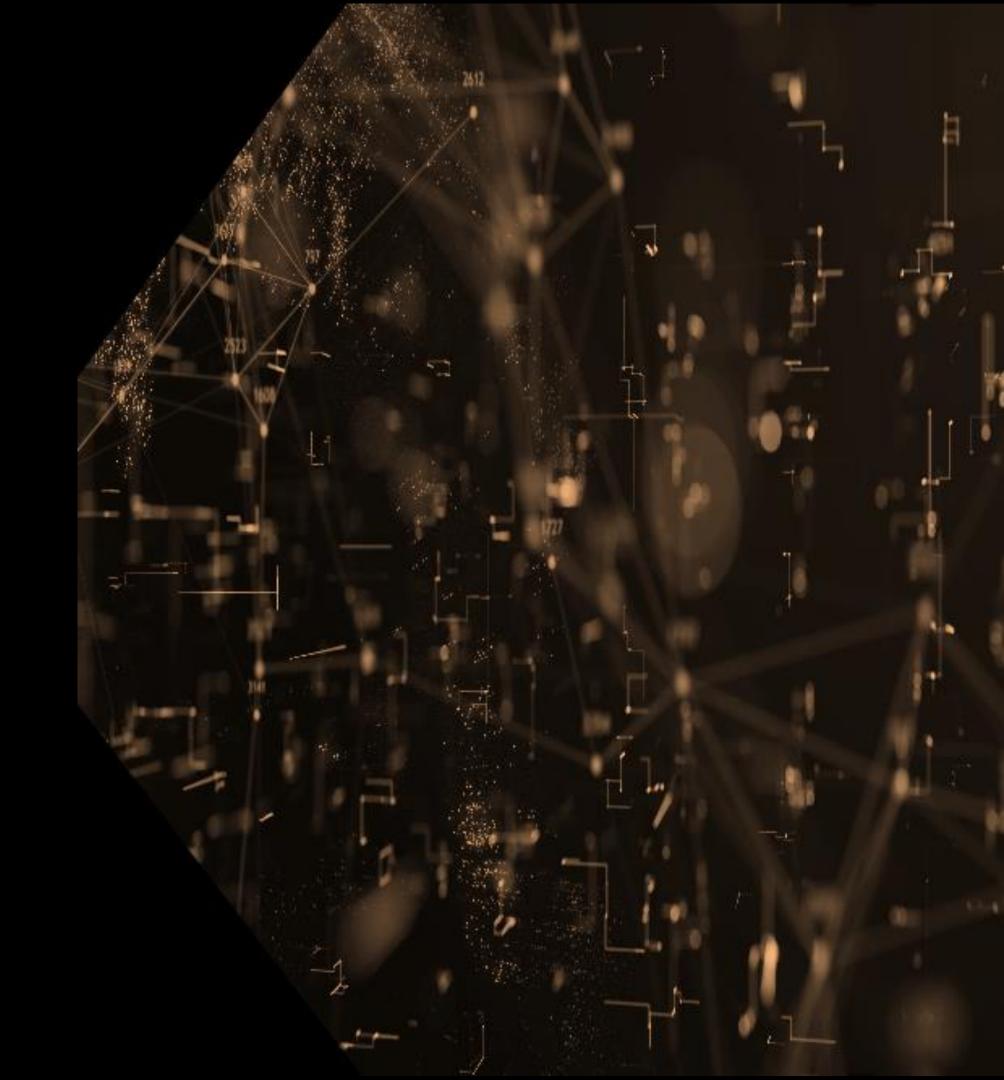


09 августа 2023

Машинное обучение и приложения



Петр Сокерин

Сколковский институт науки и технологий, РЭУ им. Г.В. Плеханова

Опыт в анализе данных:

- Участник проектов в области машинного обучения в Skoltech
- Автор нескольких публикаций в области анализа данных
- Ex-senior data Scientist в финансовой лаборатории
- Основатель DS клуба в РЭУ им. Плеханова

О чем мы сегодня поговорим

<u>Длительность презентации</u> – 1.5 часа

- 1. Повторение основных терминов машинного обучения
- 2. Зачем бизнесу нужно машинное обучение
- 3. Рекомендательные системы
- 4. Uplift-моделирование
- 5. Кейс с оценкой цены автомобиля

Виды задач в машинном обучении

- Регрессия
- Классификация
- Ранжирование

- Генерация
- Обучение представлений (word2vec)
- Обучение с подкреплением

- Кластеризация
- Детекция аномалий
- Сокращение размерности

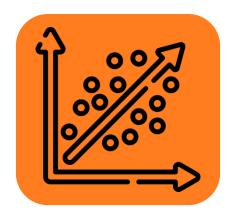
Виды задач в машинном обучении

- Регрессия
- Классификация
- Ранжирование

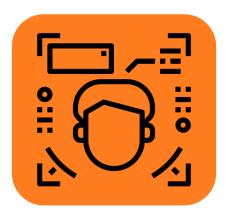
- Генерация
- Обучение представлений (word2vec)
- Обучение с подкреплением

- Кластеризация
- Детекция аномалий
- Сокращение размерности

Обучение с учителем

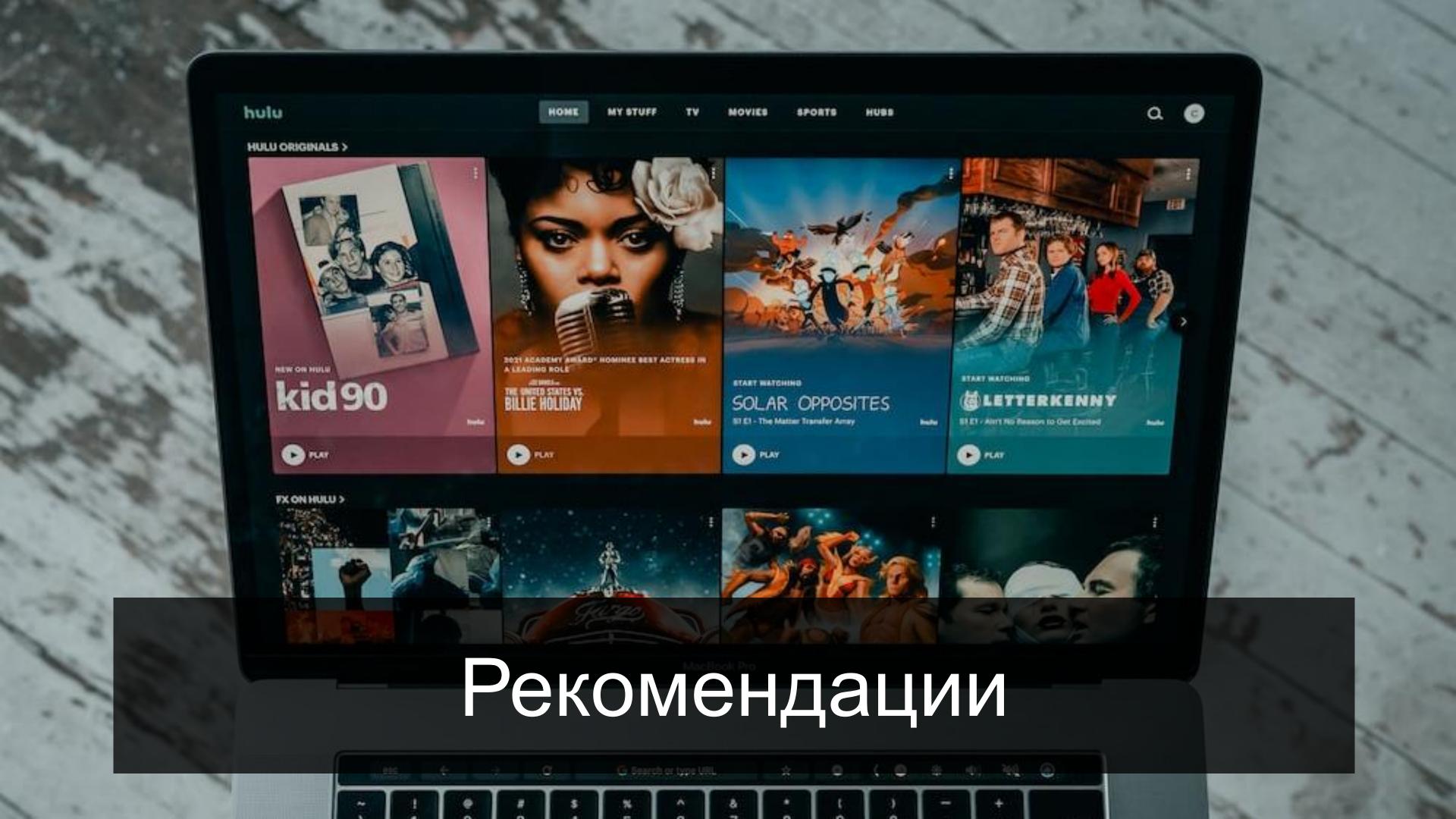


Регрессия - предсказываем число **Пример:** предсказание цены квартиры



Классификация - предсказываем класс **Пример:** распознавание лица

Ранжирование - сортировка объектов **Пример:** запрос в поисковике



Задача построения рекомендаций

Пользователи

Клиенты, покупатели

- Активные агенты,
 совершают взаимодействие
 с предметами
- Зачастую реальные люди, например, покупатели

Предметы

Объекты, товары

- Пассивные объекты, с которыми пользователи взаимодействуют
- Товары, фильмы, аудиозаписи, тексты и т.д.

Задача построения рекомендаций

Пользователи

Клиенты, покупатели

- Активные агенты,
 совершают взаимодействие
 с предметами
- Зачастую реальные люди, например, покупатели

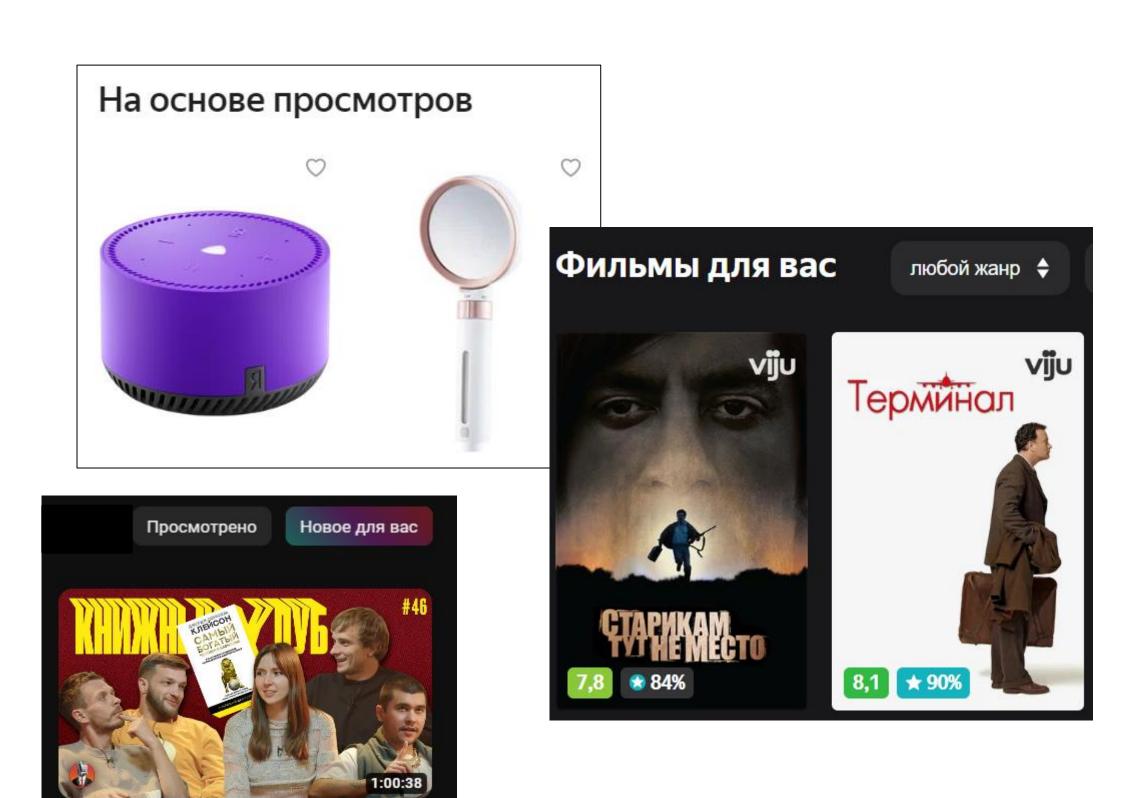
Предметы

Объекты, товары

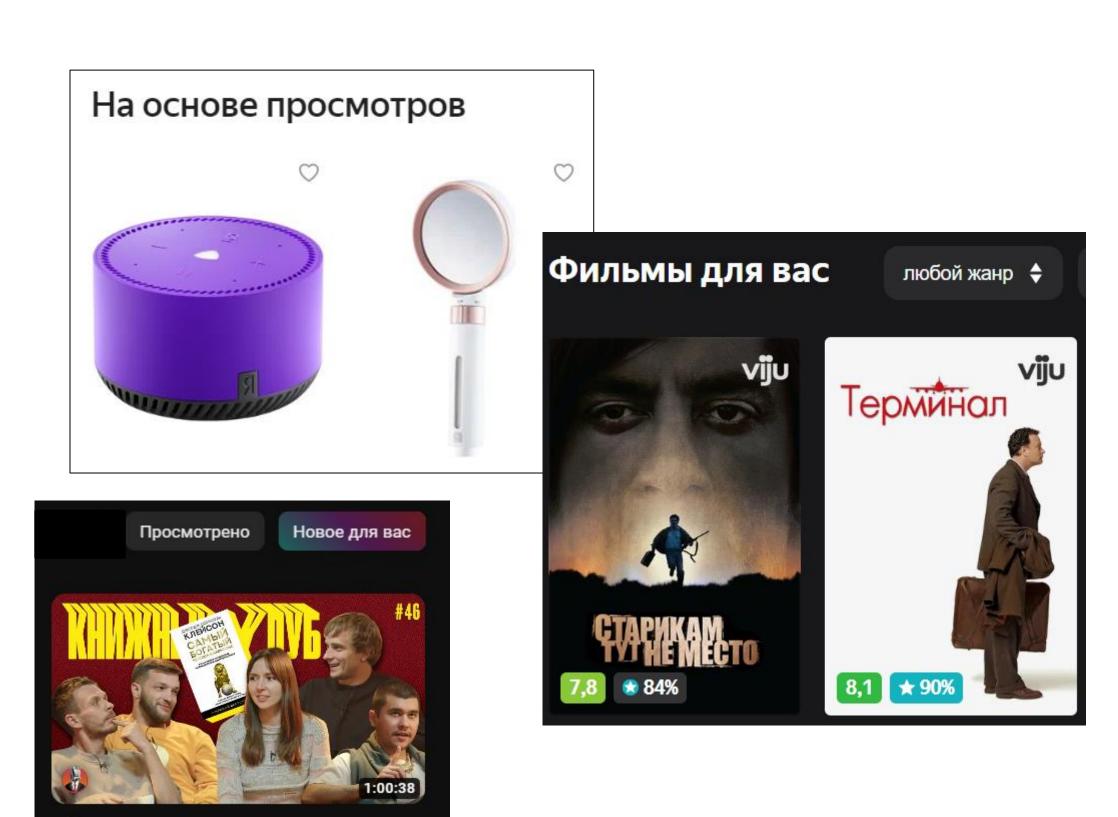
- Пассивные объекты, с которыми пользователи взаимодействуют
- Товары, фильмы, аудиозаписи, тексты и т.д.

Задача рекомендательной системы – подобрать топ К релевантных предметов для пользователя

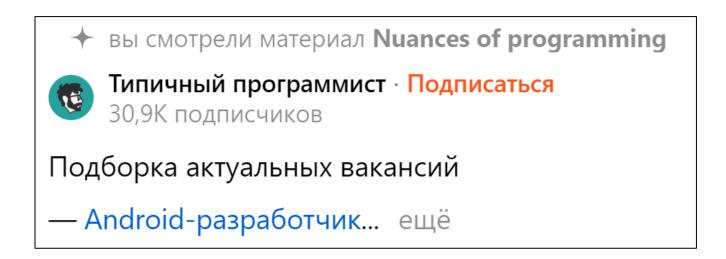
- Онлайн маркетплейсы
- Онлайн кинотеатры
- Видеохостинги



- Онлайн маркетплейсы
- Онлайн кинотеатры
- Видеохостинги

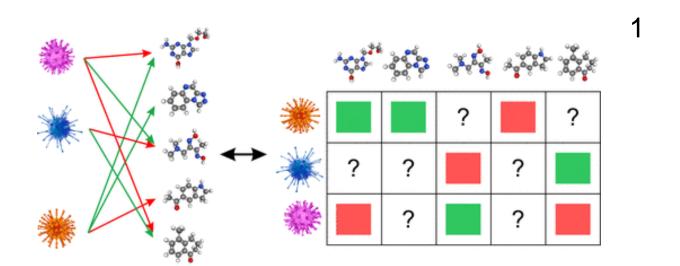


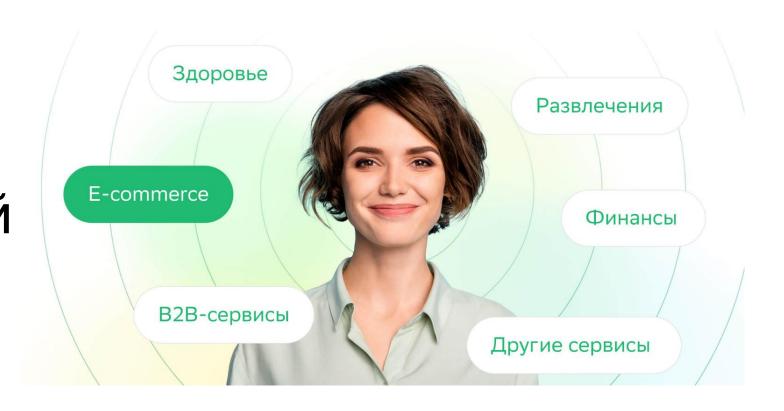
- Онлайн маркетплейсы
- Онлайн кинотеатры
- Видеохостинги
- Тестовые рекомендации
- Рекомендации на основе графов
- Рекомендации на основе геолокаций



View Location Map

- Онлайн маркетплейсы
- Онлайн кинотеатры
- Видеохостинги
- Тестовые рекомендации
- Рекомендации на основе графов
- Рекомендации на основе геолокаций
- Создание лекарств
- Рекомендации внутри экосистем





Задача рекомендаций

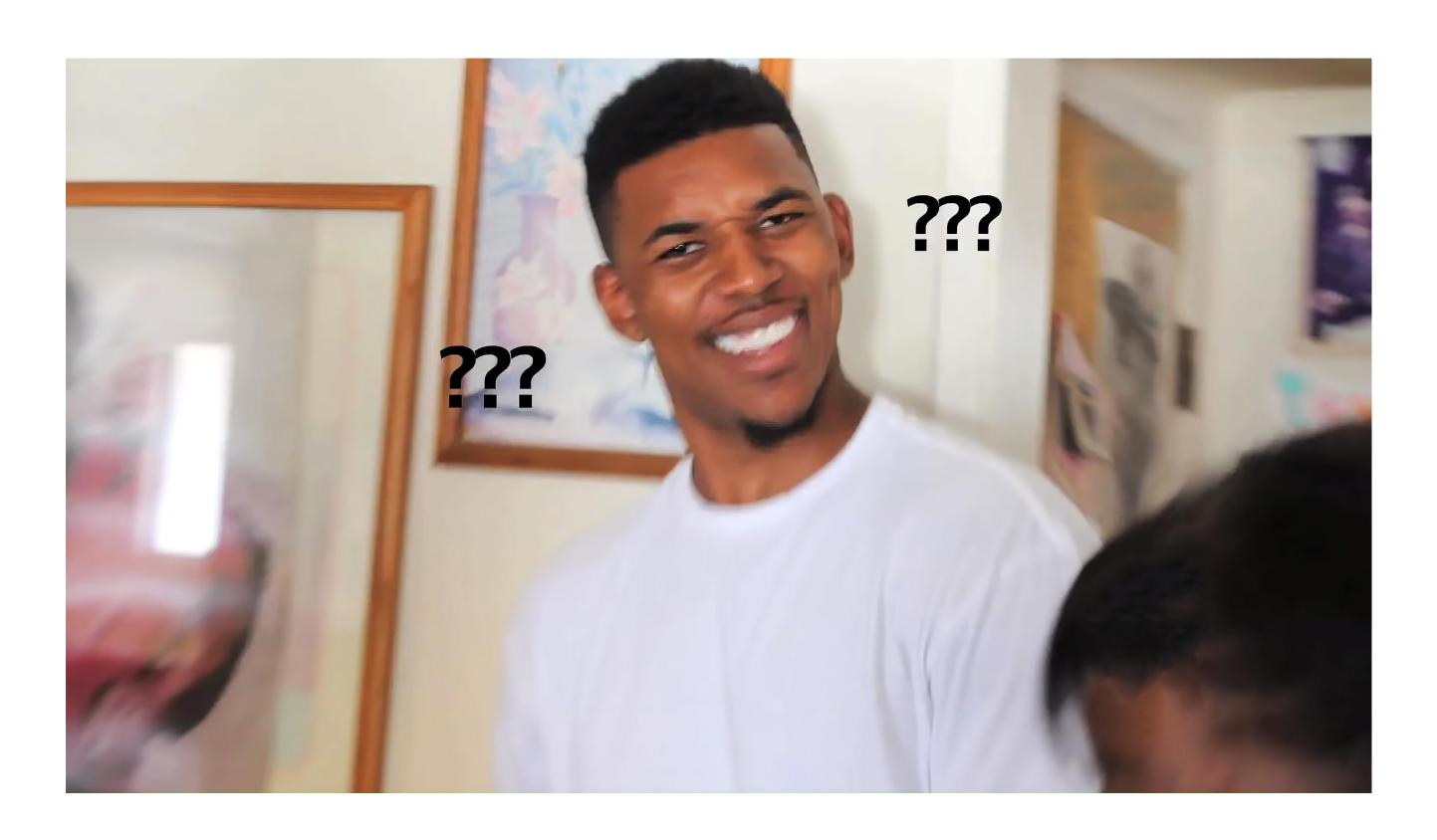
Задача рекомендаций – подобрать топ К предметов для пользователя по оценке релевантности.

Оценка релевантности – мера того, насколько товар подходит пользователю.

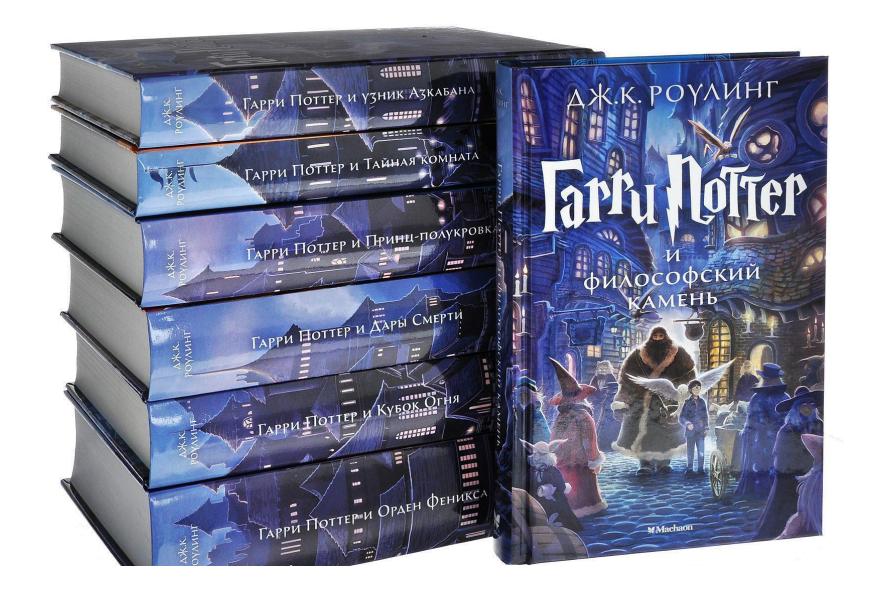
Подходы к решению:

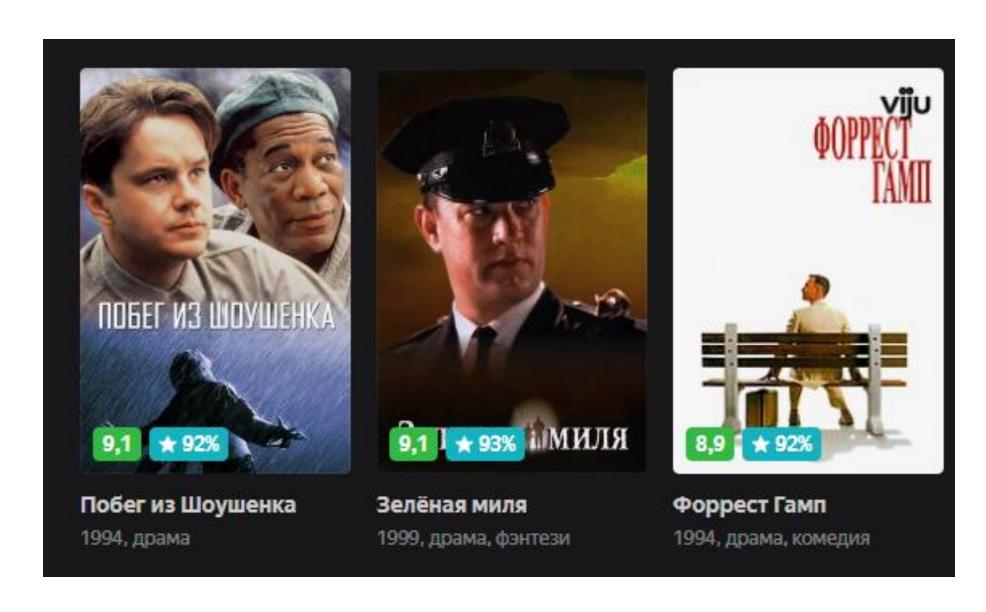
- Задача регрессии: предсказываем оценку релевантности
- Задача бинарной классификации: метка 1 подходит, метка 0 не подходит
- Задача ранжирования: топ 1 самый релевантный предмет

А как мы можем делать ранжирование

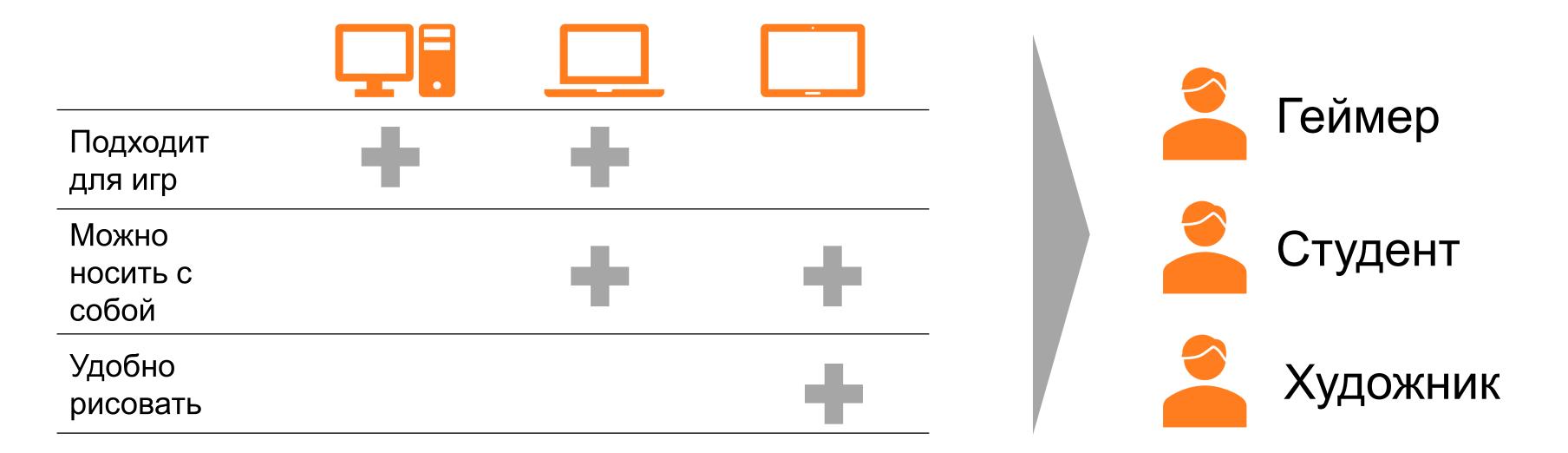


• Рекомендации на основе популярности

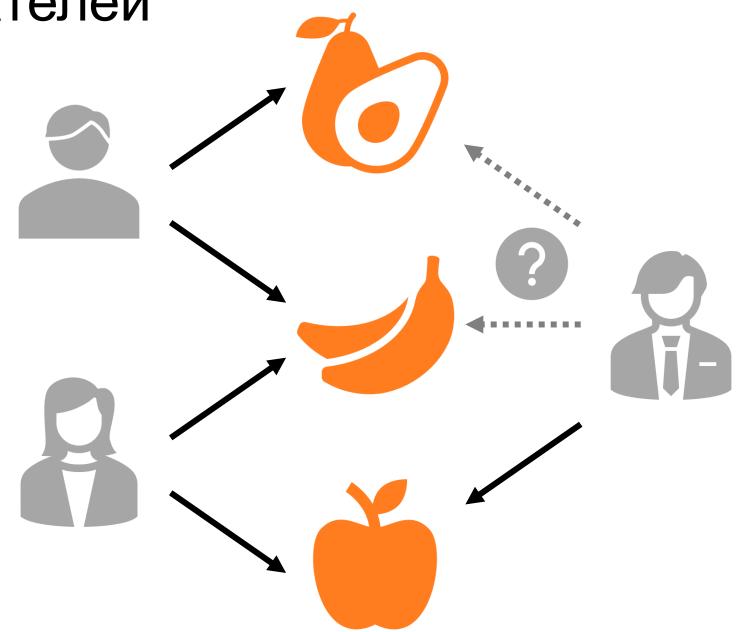




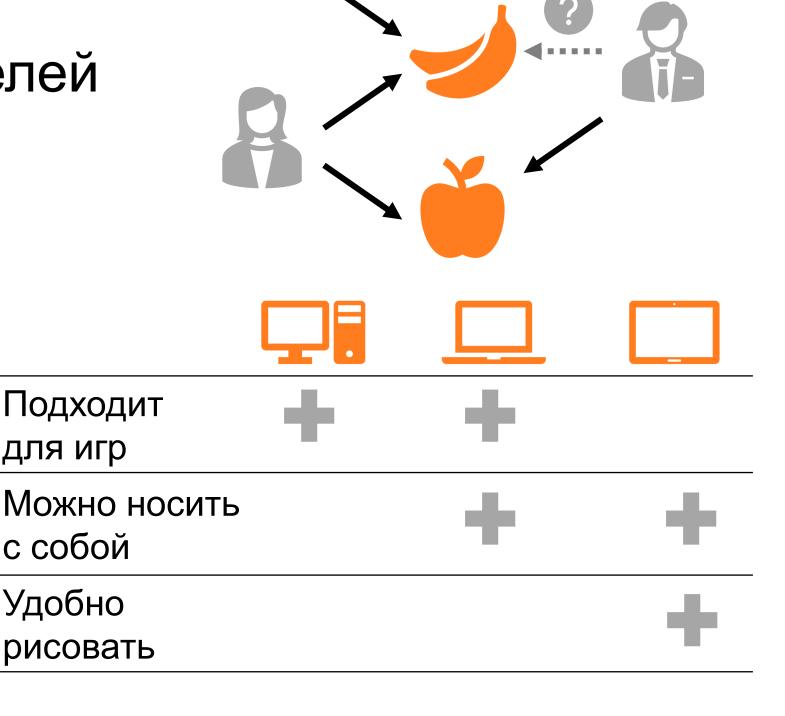
- Рекомендации на основе популярности
- Content Based подход: на основе характеристик товаров и пользователей



- Рекомендации на основе популярности
- Content Based подход: на основе характеристик товаров и пользователей
- Коллаборативная фильтрация: На основании взаимодействий



- Рекомендации на основе популярности
- Content Based подход: на основе характеристик товаров и пользователей
- Коллаборативная фильтрация: На основании взаимодействий
- Смешанные варианты

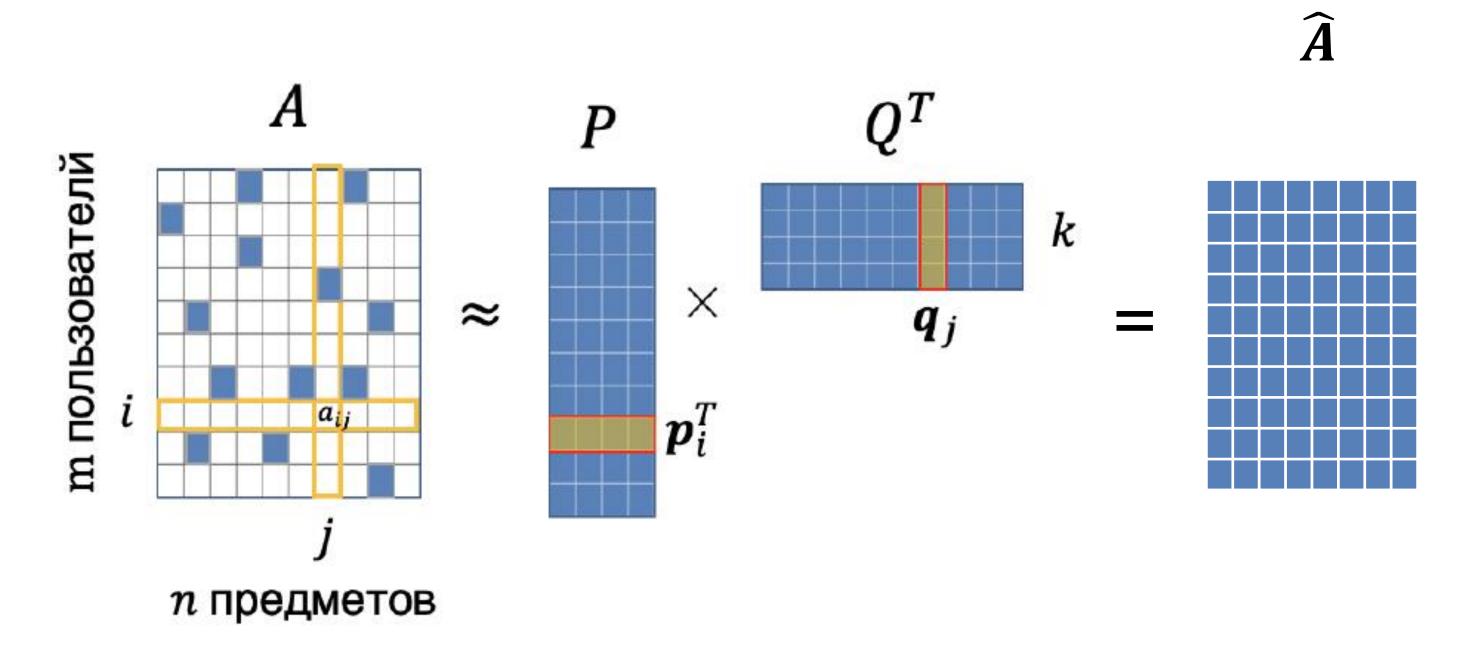


для игр

с собой

Удобно

Коллаборативная фильтрация



- А Исходная таблица с рейтингами
- P, Q таблицы представлений клиентов и объектов, которые мы подбираем

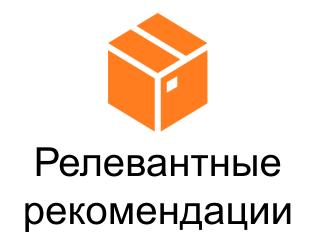


Метрика качества рекомендаций

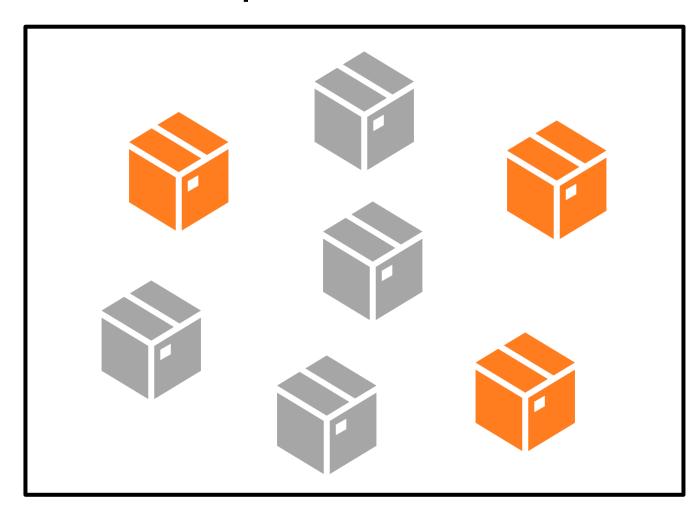
$$HitRate(HR) = \frac{n_relevant}{N}$$
,

N – общее количество рекомендованных предметов

n_relevant – количество релевантных рекомендованных предметов



Все рекомендации



С какими проблемами можем столкнуться

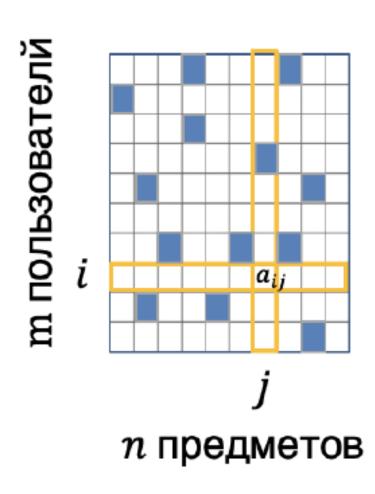


С какими проблемами можем столкнуться

- Проблема новых пользователей
- Проблема длинных хвостов:
 - проблема с памятью
 - проблема со скоростью работы
- Проблема оценки качества рекомендаций

Проблема холодного старта

Коллаборативная фильтрация плохо справляется с новыми пользователями и предметами



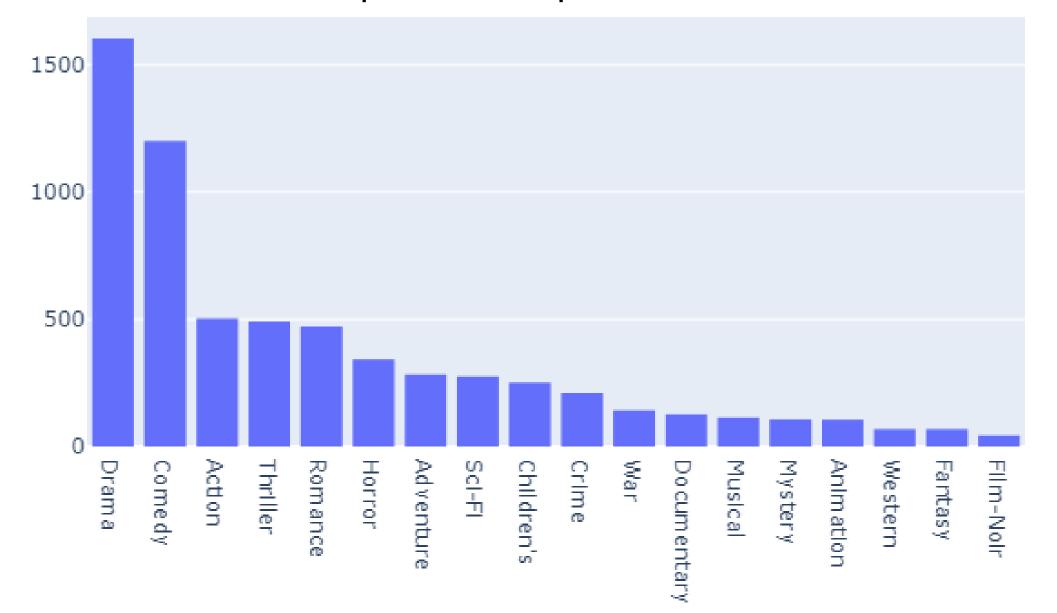
Решения:

- Использовать content-based подход: составлять анкеты для новых пользователей и рекомендовать по вкусам
- Увеличивать оценку для новых предметов, чтобы они чаще попадали в рекомендации
- Использовать смешанные модели, например, Light FM

Проблема длинных хвостов

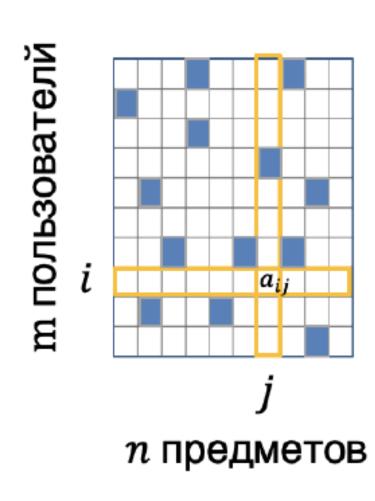
Обычно встречается большое количество нишевых товаров, которые тоже нужно рекомендовать

Гистограмма распределения фильмов по жанрам в выборке MovieLens1M



Проблема длинных хвостов

Таблицы предметы-пользователи получаются слишком разреженные (менее 5% данных заполнены)



Сложности:

- Проблемы с памятью для хранения данных.
- В реальных задачах часто необходимо строить распределенную систему.
- Проблемы в скорости подбора рекомендаций.

Проблема в скорости работы

При каждом вызове сети необходимо сравнивать тысячи/миллионы предметов.

Решения:

Заранее рассчитывать возможно не во всех рекомендации, когда это задачах

возможно

Применять простые, но потеря в качестве

быстрые модели модели

Применять двухэтапную

модель рекомендаций

Двухэтапная модель факторизации

Этап 1: Простая быстрая

Пример модели: SVD

Требование к модели: скорость работы

Задача:

отобрать из всех предметов ограниченное число лучших (50 - 1000)

Этап 2: Медленная точная модель

Пример модели:

CatBoost

Требование к модели:

Качество работы

Задача:

переранжировать лучшие предметы, отобранные простой моделью, и выдать финальные рекомендации

Оценка эффективности рекомендаций

Хорошая модель рекомендаций с точки зрения метрик рекомендаций (HR) может быть плоха для бизнеса с точки зрения прибыли

Проблема: метрики бизнеса сложно оценить на краткосрочном горизонте

Идея: использовать прокси-метрики, тесно связанные с бизнес метриками:

- Время на платформе
- Количество кликов
- Количество товаров в корзине

Оценка эффективности рекомендаций

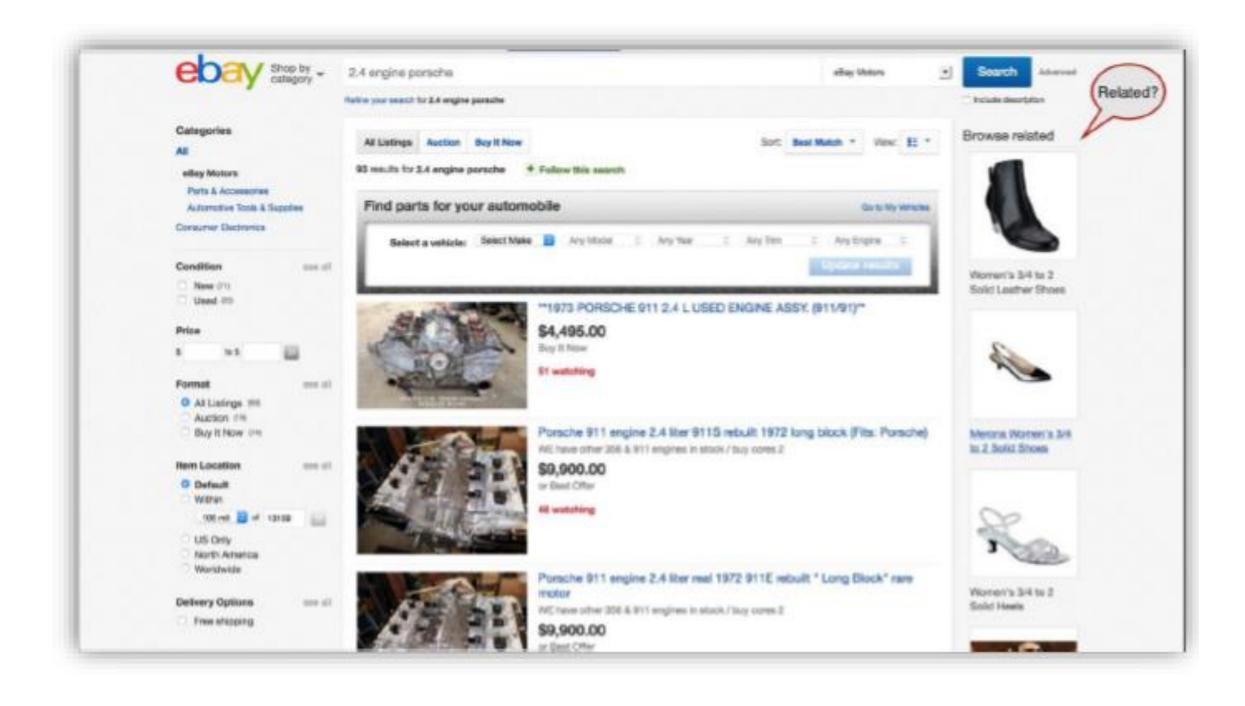
Помимо точности рекомендаций бизнесу важно большое количество других метрик.

Хорошие рекомендации должны:

- Быть разнообразными.
- Регулярно показывать новые предметы, не рекомендованные до этого.
- Быть неожиданными, уметь удивить пользователя.
- Покрывать потребности пользователя.

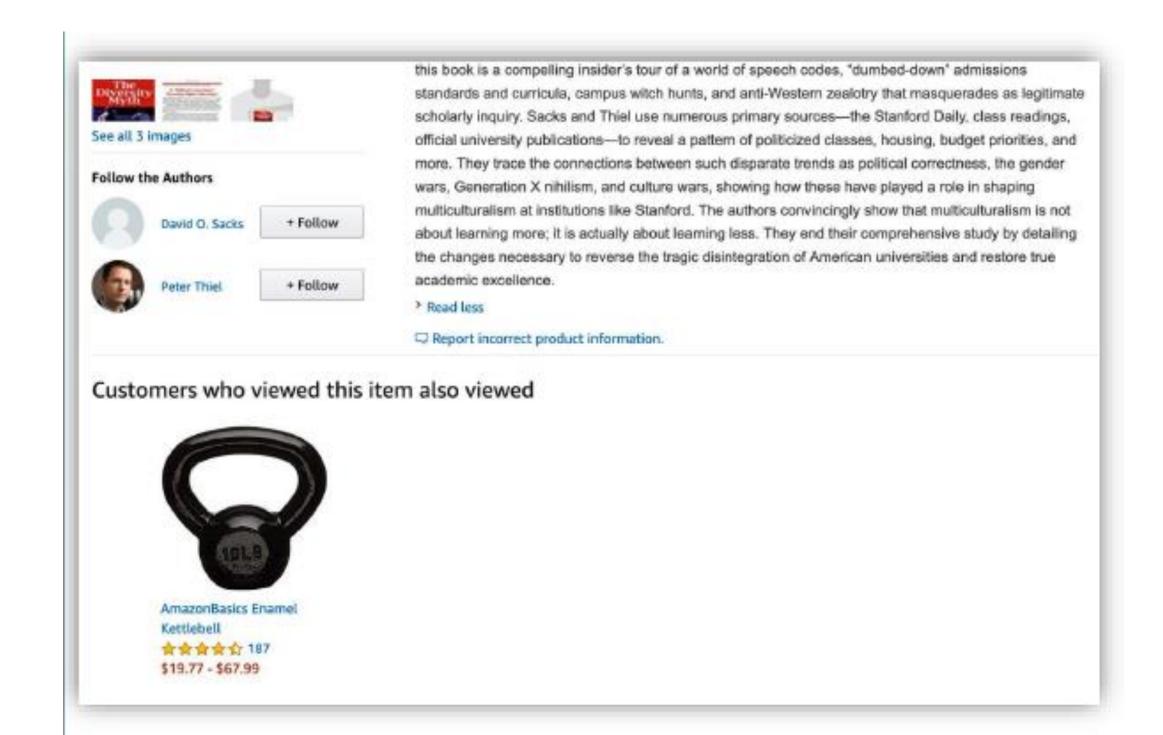
Примеры неудачных рекомендаций

Ищете запчасти для автомобилей? Вам также нужны женские туфли

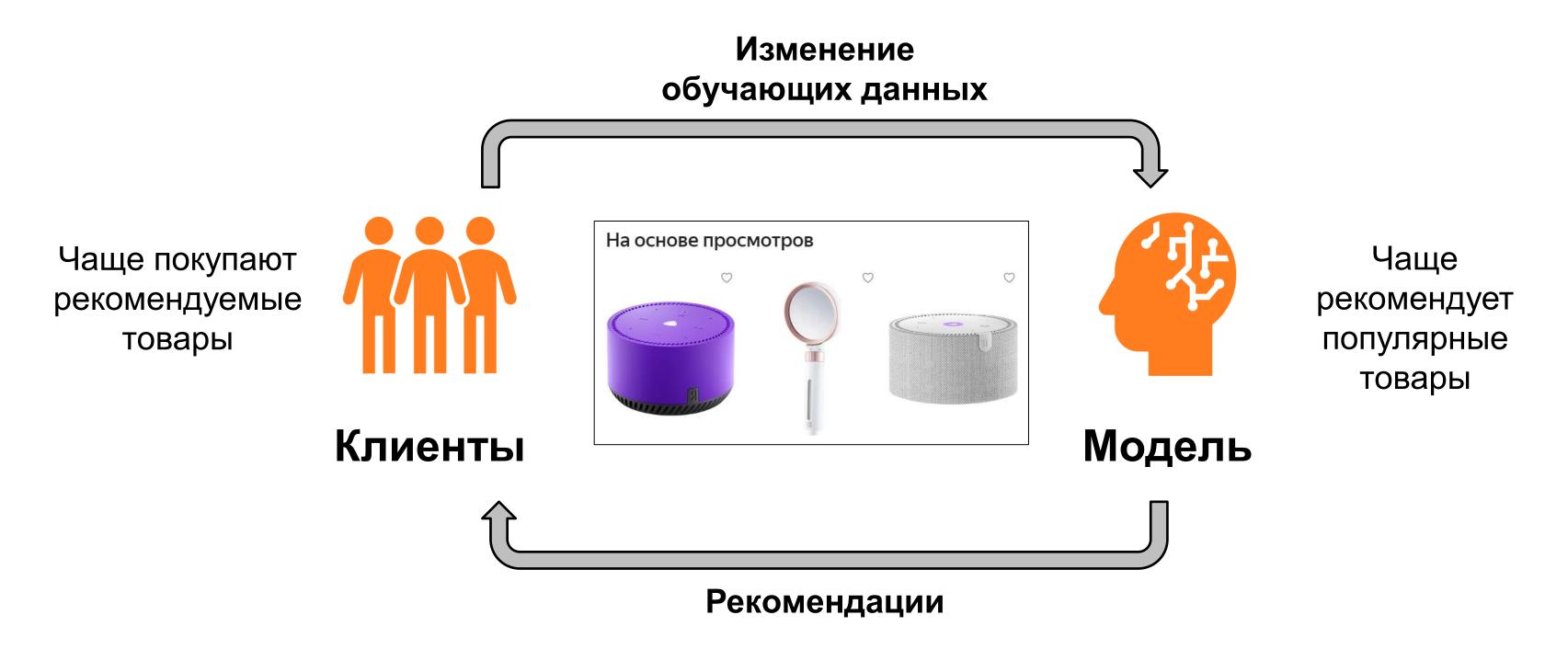


Примеры неудачных рекомендаций

Если вам нравится книга Diversity Myth Питера Тиля, то вам может понравиться и гиря



Inner loop problem



Решение: следить за разнообразием рекомендаций и искусственно повышать релевантность более редких предметов

Бизнес проблема

Пример

Мы продаем телефоны в интернет-магазине

Есть ограниченный бюджет на рекламу

Задача: Кому именно показывать рекламу?

Типы клиентов

Взаимодействие: да

Таргет: нет

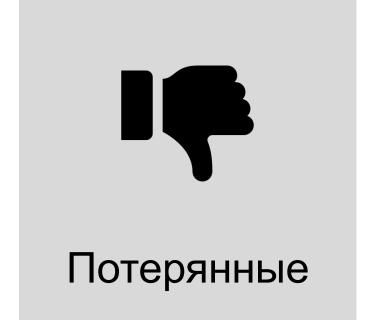
Взаимодействие: нет

Таргет: да

Таргет: да

Взаимодействие: нет

Таргет: да

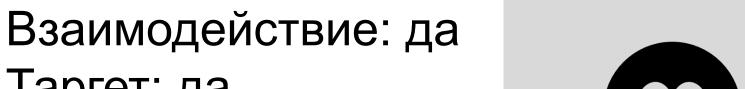


Взаимодействие: да

Таргет: нет

Взаимодействие: нет

Таргет: нет



Лояльные

Убеждаемые

Взаимодействие: нет

Таргет: нет

Взаимодействие: да

Таргет: да

Задача

Найти пользователей, которые:

- Только увидев рекламу купят телефон
- Без рекламы не купят телефон

Эта задача – не задача определения того, кто купит

То есть – это не задача классификации

Бизнес проблема

Где может применяться данная задача?

Бизнес проблема

Где может применяться

Маркетинг

Медицина

Предвыборные компании

Основные термины

Взаимодействие

Treatment, воздействие

Мы пытаемся **влиять** на клиента

Пример:

- Звонок
- Показ рекламы
- Выдача таблетки

Целевое действие

Target, таргет

Клиент совершает нужное нам действие после влияния

Пример:

- Покупка
- Голос на выборах
- Выздоровление

Постановка задачи

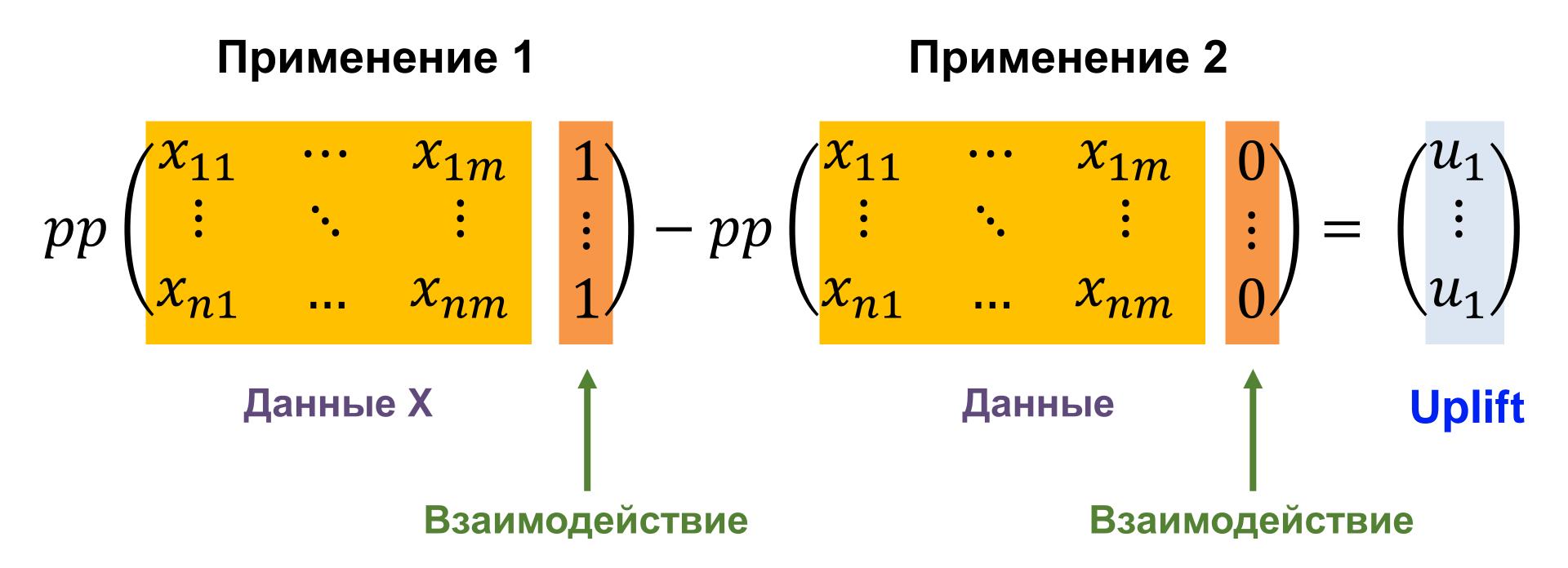
P_1 = Вероятность: было воздействие и купит

P_0 = Вероятность: не было воздействие и купит

Uplift (casual inference) = P_1 - P_0

Как можно решить такую задачу

Solo Model (S-learner)



pp - predict proba



Вы работаете на сайте по продаже БУ автомобилей. Ваша задача - добавить отображение справедливой цены автомобиля.

1. Какую бизнес-проблему мы решаем?

- 1. Какую бизнес-проблему мы решаем?
- 2. Какую задачу машинного обучения мы решаем?

- 1. Какую бизнес-проблему мы решаем?
- 2. Какую задачу машинного обучения мы решаем?
- 3. Как мы поймем, что задача решена успешно?

- 1. Какую бизнес-проблему мы решаем?
- 2. Какую задачу машинного обучения мы решаем?
- 3. Как мы поймем, что задача решена успешно?
- 4. Какие данные для обучения модели нам нужны и сколько?

- 1. Какую бизнес-проблему мы решаем?
- 2. Какую задачу машинного обучения мы решаем?
- 3. Как мы поймем, что задача решена успешно?
- 4. Какие данные для обучения модели нам нужны и сколько?
- 5. Как мы поймем, что модель работает правильно?

- 1. Какую бизнес-проблему мы решаем?
- 2. Какую задачу машинного обучения мы решаем?
- 3. Как мы поймем, что задача решена успешно?
- 4. Какие данные для обучения модели нам нужны и сколько?
- 5. Как мы поймем, что модель работает правильно?
- 6. Какие проблемы могут возникнуть при внедрении. Как их можно решить?

